CLASS11 MID TERM XAM

PHYSICS MARKING SCHEME

1 marks
[1][b][2] d [3]a [4]b [5] a [6] c [7] b [8]c [9] b [10] c

2 marks
[11]
$\mathrm{T}=\frac{2 m 1 m 2 g}{m 1+m 2}$
Yes[1/2], m1, m2, g [11/2marks]
[12].
Graph both positive and negative
Graph only positive side
[13] definition of v ins
Slope of the tangent
[14] $\mathrm{S} 1=2 \mathrm{t}+1 / 2 \mathrm{gt}^{2}$
$\mathrm{S} 2=1 / 2 \mathrm{gt}^{2}$
$\mathrm{S} 1-\mathrm{S} 2=20[1 / 2]=2 \mathrm{t}$ or $\mathrm{t}=10 \mathrm{~s}$

OR

$\mathrm{S}=\mathrm{ut}+1 / 2 \mathrm{gt}^{2}=-4.5 \times 5+1 / 2 \times 9.8 \times[5]^{2}=100 \mathrm{~m}$
[15]

$$
\cos \Theta=\frac{\mathrm{a} \cdot \mathrm{~b}}{\mathrm{ab}}=\frac{3 \sqrt{ } 2}{3 \times 2} \text { or } \Theta=45^{0}
$$

[16] unit vector
difference between scalar and vector product of 2 vectors
[17] diagram labelled
derivation the maximum height reached by a projectile
final answer

3 marks

[18] dimension of $\mathrm{P}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
dimension of $\mathrm{a}=\mathrm{ML}^{5} \mathrm{~T}^{-2}$
Dimension of $b=L^{3}$
$[19] V=u+a t$
$0=20-9.8 \mathrm{tl}$ or $\mathrm{t} 1=2.04 \mathrm{~s}$
$\mathrm{S}=\mathrm{ut}+1 / 2 \mathrm{gt}^{2}$
Height reached $S=20 \times 2.04-1 / 2 \times 9.8 \times[2.04 \times 2.04]=40.8-20.39=20.41 \mathrm{~m}$
Time to reach ground $=45.41=1 / 2 \mathrm{~g} \mathrm{x} \mathrm{t} 2^{2}$
$\mathrm{t} 2=3.1 \mathrm{~s}$
total time $=2.04+3.1=6.05 \mathrm{~s}$
[20]
Distance covered by the man in $\mathrm{tsec}=10 \mathrm{t}$
Distance covered by bus in $\mathrm{ts}=1 / 21 \mathrm{xt}^{2}$
Ie $48+t^{2}=10 t$
Solve to find t as 8 sec
[21]

[22]
'a' and angular acceleration ' α '
[23] triangle law of vector addition. R ' of 2 vectors ' P ' \& ' Q ' makes angle ' θ ' between them.
[24]
horizontal range $=u^{2} \sin 2 \Theta / g=[40]^{2} \sin 2 \times 45=160 \mathrm{~m}$ 10
$\mathrm{BC}=340-\mathrm{AB}=340-160=180 \& \mathrm{~V}=\mathrm{BC} / \mathrm{t}=180 / \mathrm{t}-[1]$
$2 u \sin \frac{\theta}{g}=t$
$80 \sin 45=\mathrm{t}$ or $\mathrm{t}=56.5 \mathrm{~s}$
And $\mathrm{v}=180 / 56.5=3.18 \mathrm{~m} / \mathrm{s}$

OR

$200 \mathrm{t}=400 \sin \theta x t$ or $\theta=30$
[25][a] any 2 uses of dimensions.

[b]

$$
\begin{aligned}
& \mathrm{T}=\mathrm{kr}^{\mathrm{x}} \mathrm{~m}^{\mathrm{y}} \mathrm{G}^{\mathrm{z}} \\
& \mathrm{~T}=\mathrm{L}^{\mathrm{x}} \mathrm{M}^{\mathrm{y}}\left[\mathrm{M}^{-1} \mathrm{~T}^{-2} \mathrm{~L}^{3}\right]^{\mathrm{z}} \\
& \mathrm{Z}=-1 / 2, \mathrm{x}=3 / 2, \mathrm{y}=-1 / 2
\end{aligned}
$$

OR

[a] limitations of dimensions [any 2]
[b]

$$
\begin{aligned}
& \left.V=K\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]^{\mathrm{x}} \mathrm{ML}^{-3}\right]^{y} \\
& \mathrm{X}=1 / 2 \text { and } \mathrm{y}=-1 / 2 \\
& \quad \mathrm{X}=-\mathrm{y}
\end{aligned}
$$

[26][a]velocity- time graph,
,[i] $\mathrm{V}=\mathrm{U}+$ at [ii] $\mathrm{S}=\mathrm{ut}+\frac{1}{2} \mathrm{a} t^{2}$
[b]No, [i] in circular motion-after one complete rotation.[ii] in vertical motion- a stone is thrown vertically upwards and received by the thrower

OR

[a]the equation $V^{2}=U^{2}+2$ as
[b] A car starts from rest and accelerates uniformly for 10 s to a velocity of $8 \mathrm{~m} / \mathrm{s}$. It then returns at a constant velocity and is finally brought to rest in 64 m with constant retardation. The total distance travelled by the car is 584 m . Find the acceleration, retardation, and the total time taken?

[27][a trajectory of a projectile? a projectile is a parabola. [b] 4m/s

OR

[a] uniform circular motion always accelerated.
[b]the centripetal acceleration acting
[28]Case study
[b][ii]d [iii]a [iv]c [v]b
[29]
[i]c[ii]d [iii]b [iv]d [v]b

